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ABSTRACT

The Stingray is the second-generation High Speed Civil Transport

(HSCT) designed for the 21st Century. This aircraft is designed to be

economically viable and environmentally sound transportation competitive in

markets currently dominated by subsonic aircraft such as the Boeing 747 and

upcomingMcDonnell Douglas MD-12. With the Stingray coming into service in

2005, a ticket price of 21% over currentsubsonic airlines will cover operational

costswith a 10% return on investment. The cost per aircraft will be $202 million

with the DirectOperating Cost equal to $0.072 per mile per seat.

This aircraft has been designed to be a realistic aircraft that can be built

within the next ten to fifteen years. There was only one main technological

improvement factor used in this design, that being for the engine specific fuel

consumption. The Stingray, therefore, does not rely on technology that does

notexist.

The Stingraywill be powered by four mixed flow turbofans that meet both

nitrousoxideemissionsand FAR 36 Stage III noise regulations. It will carry250

passengers a distance of 5200 nautical miles at a speed of Mach 2.4. The

shape of the Stingray, while optimized for supersonic flight, is compatible with

all current airline facilities in airports around the world. As the demand for

economical, high-speed flight increases, the Stingray will be ready and able to

meet those demands.
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1.0 INTRODUCTION

With the increasing demands for transoceanic commercial transport,

many believe that a supersoni c transport is an inevitable necessity. The

forecast shows that by the year 2010, international air traffic will represent 60%

of the total world traffic (Ref. 16). In order to meet this anticipated demand, a

supersonic transport must be an economical, environmentally sound aircraft

that, besides creating its own market, must be competitive with the Boeing 747

fleet as well as other Boeing and McDonnell Douglas long-range subsonic

fleets.

The first and only currently operational supersonic commercial transport

was a British and French collaborated aircraft named the Concorde. This Mach

2.2 aircraft entered service in 1974 to a storm of environmental protests. Sonic

boom preventedoverland supersonicflight and the noise from the Rolls-Royce

Olympus enginesgained the Concorde the reputation of being a noisyairplane.

For this reason,the Concorde was banned from most airportsaroundthe world.

Although it was a revolutionary airplane for its time, only fourteen

Concorde airplanes were built. For this reason, the cost per airplane

skyrocketed,causingthe airframer to lose money. Concorde was limitedto first-

class only, drivingthe cost up to $0.76 per passenger mile (1974 U.S.D), a 38%

increase over currentsubsonic first class fare. In addition, unexpectedlyhigh

fuel costs coupled with the fact that the Concorde was not fuel-efficient drove

the cost furtherup (Ref. 16)._

Over the pasttwenty years, many designs for supersonictransportshave

been evaluated and discarded. Only in the past few years, with NASA

sponsoring different programs (Ref. 22), has interest in the HSCT been

rekindled. With many lessons learned from the Concorde's mistakes, it is

believed that a next-generationHSCT is imminent.
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The Stingray is des'igned to be an economically viable and

environmentally sound supersonic transport that will utilize the long range

oceanic routes. It is a Math 2.4 aircraft that will carry 250 passengers a range

of 5,200 nautical miles. This will meet one of the fastest growing markets, the

Trans-Pacific route as well as servicing the Trans Atlantic, Europe to Asia, and

Intra-Asian markets. The potential route study yielded more than twenty city

pairs in an attempt to link up the major international airports across the oceans

to complete the Great Circle (Ref. 23). The projected minimum ticket price is

$0.11 per passenger mile with a return on investment of 10%. Its three-class

configuration will provide a faster alternative to the subsonic Boeing 747 while

providing the same level of comfort. Its cruise altitude will be at 60,000 ft, in

order to minimize the ozone breakdown due to nitrous oxide emission.

This report will discuss many of the preliminary steps taken in the design

of the Stingray as well as the trade studies that yielded the final configuration of

the aircraft. Also to be discussed will be engine specifications, performance

capability, structures and stability and control; all of which provided interesting

challenges that must be overcome in order for this airplane to move into a

detailed design.



FIGURE 1.1 STINGRAY ISOMETRIC



.. FOLDOUT FRAME _ (

#

S TINGRA Y
F .i i ,,,, . I I _ I I ...... II I ]I I ill I ....

-- 291"
................U...........a...........a............_ 50'

11.5"

.j ,o 6o7"z 16. 9' _1,, _ !



5

2.0 MISSION PROFILE

The StingraY will perform missions similar to current commercial

transports. The mission will consist of the following:

1. Engine startup, warmup, taxi, takeoff and climb out.

2. Climb at 250 knots IAS) to 10,000 ft as per FAA regulation.

3. Climb at best rate of climb to 30,000 ft.

4. Cruise at Mach 0.9 untilaircraft is 100 nautical miles off coast and

accelerate to Mach 1.2.

5. Climb to 60,000 ft. and accelerate to Mach 2.4.

6. Cruise at Mach 2.4.

7. Descend.

8. Cruise at Mach 0.9 to destination

9. Loiter

10. Descend.

11. Landing, taxi, shutdown.

The Stingray will carry international reserves, allowing to fly to alternates

at a maximum distance of 300 nautical miles.

The primary diffei'ence between the Stingray and current subsonic

transport is, of course, the cruise time. For example, the Boeing 747-400 flying

the L.A_-Tokyo route would take 9.6 hours one-way. Comparatively, the

Stingray would take only 3.2 hours one-way to fly the same distance. This

corresponds to a time savings of 200%! Table 2.1 shows the time and distance

breakdown between city pairs for the Stingray and the Boeing 747-400.
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Cruise Time Cruise Time

City Pair Distance 747-400 Stingray
(nmi)

L.A.-Tokyo 4760 9.6 3.2
Tokyo- 2870 6.75 2.25
Singapore
Singapore-Cairo 4469 9.45 3.15
Cairo-London 1875 4.05 1.35
London-New 4067 8.85 2.95
York

Table 2.1 Cruise Flight Time Comparison

This level of time savings is particularly important in routes such as

Tokyo-Singapore, where time zone difference is only 3 hours. Therefore, the

Stingray will be crucial not only in Trans-Pacific or Trans-Atlantic travel, but in

Intra-Asia travel as well. It is also possible for the Stingray to complete the

Great Circle in order to maximize the load factor of the aircraft all year round.

Table 2.2 provides weight, time and distances travelled throughout the

mission. Figure 2.1 shows the mission profile of the Stingray.

Flight regime Wt (Ibf) dW (Ibf) Wt% dR (nm) dt (rain) °/°time

StartTakeoff 725000

Start FirstSegment Climb 713000 11721 3.25% 0 10 3.99%
Start SubsonicCruise 695000 18753 5.20% 45 6.5 2.60%

Start Second SegmentClimb 686000 8114.2 2.25% 75 4 1.60%

Start SupersonicCruise 656000 30293 8.40% 200 15 5.99%
End Supersonic Cruise 402000 254065 71.78 4405 191.94 76.64%

%
End Descent 394000 8114.2 2.25% 175 18 7.19%

Taxi 394000 360,63 O.10% 0 5 2.00_/o
Reserve 371000 22540 6.25% 300

Block 354000 99,48 5200 250.44 100,00%
%

I 4174 hours

Table 2.1 Stingray Mission Breakdown
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3.0 PRELIMINARY SIZING

3.1 PRELIMINARY WEIGHT ESTIMATES

Preliminary sizing of the Stingray was accomplished using the weight

fraction method described in (Ref. 1). The flight was broken down into nine

regimes, each requiring a fixed fraction of the missionfuel. Empirical data is

very scarce for supersoniccommercial transports. Data from the British-French

Concorde, NASA AST-100, Boeing 747-400, Boeing 2707, Rockwell XB70A

Valkerie, and the Tupolev TU144 were usedfor analysis(Ref. 15). The mission

fuel fraction was most sensitive to range, cruise specific fuel consumption

(SFC), and the cruise lift to drag ratio(L/D), (Ref. 24). Initial estimates using a

250 passenger 5500 nautical mile range aircraft flying at Mach 2.7 resulted in

gross takeoff weightsbetween one and two millionpounds. These aircraft were

consideredto be too heavy for currentairportrunwaysto handleso the decision

was made to reduce the range and Mach number. The final weight fractions

and weightsgivenby.the initialsizing are given inTable 3.1 below.

Numberof 250
Passengers

Cruise Mach Number 2.4
Cruise Altitude 60,000 ft

Range 5200 nmi
Cruise L/D 9.7

Cruise SFC 1.17
Mission Fuel Fraction 0.51

Operating Empty 322,000
Weight Ibs.

Fuel Weight 358,000 Ibf
Payload 53,800 Ibf

Gross TakeoffWeight 729,000 Ibf

Table 3.1 Initial Sizing by Weight Fraction
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3.2 SENSITIVITY STUDY

A sensitivitystudywas performedusing the method in (Ref. 2) and the above

weight estimate. The aircraft weight was found to be extremely sensitive to

endurance, specific fuel consumption,and lift-to-drag ratio. The results are

presented in Table 3.2. These indicatethat the three most importantfactors to

be considered during the design are decreasing the supersonic drag

(aerodynamics), emptyaircraftweight (structuresand systems),and engine fuel

performance (propulsion).

i 'l i

aWT/O/aRange 392 Ibf/nm
aWT/O/aEndurance 538816 Ibf/hr
aWT/O/aVelocity - 1826 Ibf/knot
aWT/O/aLift/ Drag -309272 Ibf
aWT/O/aSFC 2511181 Ibf/SFC

Table 3.2 Sensitivity Factors

3.3 DESIGN POINT

Preliminary wing area and engine sizing were accomplished using the

methods in (Ref. Roskam2). The primary constraintsfor this aircraftwere stall

speed (CLmax), FAR 25 takeoff and landing requirements,and thrust to weight

(T/W) after an engine failure. Becauseof the low aspect ratiodelta planform the

Clrnax limit was 1.03 for landingand 0.95 takeoff. The leftmostvertical line on

Figure 3.1 represents the wing loadinglimit of around 95 psf. This constraint

was set by the FAR 25 landingdistance requirement. The horizontal line, the

minimum necessary T/W was set by a landing configuration single engine

failure. In thisconfigurationthe T/W is a direct functionof lift to drag (L/D) ratio.

The L/D = 6.2, whichyieldsa T/W of 0.34. The slopedline representsa takeoff

Clmax at takeoff of 1.0 and doesn't really get any design constraint. The design

point was picked as low and far to the right as possible in an attempt to keep the
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wing area and engine size as low as possible. The final wing loading and T/W

of the aircraft are 93 psf and 0.34 respectively. The wing loading provides

greater passenger comfort but increases the takeoff speed and distance.
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4.0 AIRCRAFT CONFIGURATION

4.1 CONFIGURATION SELECTION

The configurationof the Stingrayaircraftwas selected after consideration

of several designs. There were three primary design considerations in the

configurationselection: low weight, aerodynamic efficiencyand complexity. A

low aircraft weight will reduce structural (especially landing gear) loads and

engine thrust requirements. Aerodynamicefficiency (the lift-to-drag ratio) was

another factor in the determination of the Stingray's range capability.

Complexity became a concern since increasing complexity, for example, in a

swing wing, also increases aircraft weight and cost, both in manufacturing and

maintenance.
i

The double crank delta selected for the Stingray was chosen after a

careful studyof the followingpossibilities:

• Full swingwing

• Swingingwing tips

• Obliquewing

• Arrowwing

• Doublecrank delta

The swing wing was considered because it posses good aerodynamic

performance at all flight conditions. During takeoff, landing and subsonic

cruise, the wing sweep could decrease to provide better subsonic handling,

Supersonically,the wing could be swept back for good aerodynamic efficiency.

The aerodynamic center shift for a swing wing is also minimized, allowing for

better handling during transonic flight. However, the aerodynamic benefits

were outweighed by the high weight penalty and complexity. The pivoting

mechanism would not have easily fit into the thin wing section needed in a
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supersonicaircraft. A thicker wing section could be used, but that would greatly

increase wave drag since a larger cross-sectional area would be presented to

the flow. In addition, the redundancy required for the pivot to counter a pivot

failure would have further increased the wing weight and complexity.

The oblique wing was also considered due to its subsonic and

supersonic aerodynamic flexibility. It was rejected because it has poor roll

control and one engine out characteristics. Structurally, the pivot for the oblique

wing would need a backup system in case of primary pivot failure, which would

increase wing weight. Also, since the landing gear cannot be mounted on the

wing, the tip-over angles would be very high. Research has indicated that

people prefer to travel on a conventional aircraft as opposed to an

unconventional aircraft.

Finally, the arrow wing, which is optimum at supersonic speeds above

Mach 3.0 was rejected since the Stingray is only flying at Mach 2.4. In addition,

flutter on the wing tips would cause severe structural problems.

The double crank delta wing was chosen since it has high fuel volume,

even with thin wing sections. Also, the aerodynamic center shift is small (only

4% on the Stingray). Finally, the stall characteristics of a double crank delta are

very good compared to other planform designs such as the arrow wing. The

disadvantages are that delta wings yield low takeoff L/D values. This leads to

increased engine required thrust and higher flap deflections (which will

increase drag). In addition, CLo_values are low, leading to higher angles of

attack on takeoff and landing, and higher induced drag in cruise conditions.

A canard configuration was considered and weighed against a tailless or

tailed aircraft. In order to maintain aerodynamic flexibility (high lift, low drag), a

study of a retractable canard was considered, but was rejected since, like the

swing wing, the weight penalty would be high.
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The horizontal tailless concept (used in the Concorde) was rejected due

to aerodynamic and stability and control considerations. In a tailless aircraft,

there is less control power and less space for high lift devices available since

the trailing edge of the wing must carry both control surfaces as well as high lift

devices. The tailed design provided a longer moment arm to the center of

gravity, reducing control surface sizing on the wing. In addition, the tailed

design allowed for more high lift devices on the trailing edge of the wing, which

was required for takeoff and landing. Finally, the horizontal tail can be used to

counter pitching moments created by the deflection of high lift devices.

Aerodynamically, however, a horizontal tail will increase skin friction drag since

it will add more surface area to the aircraft. Also, a horizontal tail will increase

the aircraft weight. After considering the advantages and disadvantages of

each configuration, the Stingray incorporated a crank delta wing and a

horizontal tail.

The fuselage characteristics were determined by considering passenger

comfort, aerodynamicdrag, and airport compatibility. The length of the fuselage

could not exceed 320 ft. (which was the diagonal of the "box" created by the

Boeing 747-400). Figure4.1 comparesthe Boeing747-400 box with the HSCT

in the diagonal. A length exceeding 320 ft. would not fit into conventional

airport terminals. The aircraft length also played an important role in drag

considerations. A longer aircraft reduces wave drag and sonic boom, but will

also increase parasite drag. The final length was 292 ft., which not only will

carry the 250 passengers specified in Ref. 25, but also will reduce supersonic

wave drag while not increasingparasiticdrag substantially.



Figure 4.1 Boeing 747-400 Box

The diameter of the fuselage was selected in order to minimize the cross-

sectional area. A large diameter fuselage could hold more passengers, but

would increase both surface area (hence increasing parasitic drag), and wave

drag. Area ruling was performed to minimize cross-sectional area distribution,

reducing wave drag. For this reason, the fuselage cross-sectional area was

minimized while still emphasizing passenger comfort.

The landing gear comparison was made between two, three and four

truck configurations for the main gear. The two and three truck configuration

yielded load classification numbers (LCN) of greater than 100. Since the

Stingray's LCN should be no more than that of the Boeing 747-400 (which has

an LCN of 92), these configurations were not acceptable. The four truck
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configuration provided an LCN of 82. In terms of weight, the four truck

configuration would increase the weight but would enhance lateral stability on

the ground, enhancing both passenger comfort and preventing engine strike on

rotation. The two and three truck configurations would reduce weight, but have

significant scrubbing problems. The four tire truck was selected in order to

minimize scrubbing effects. For these reasons, the four truck, four tire

configuration was selected.



17

4.2. WING DESIGN

4.2.1 WING CONFIGURATION

The primary needs driving the wing selection was high supersonic and

subsonic efficiency, high fuel volume, stabilityand control considerations and

low wing weight. The final configurationchosen for the Stingray was the double

crank delta wing shown in Figure4.2.

13.3" -_ ",-

69'

--! j F_J.selage ce_terl_vte

-- 130"

Figure 4.2 Stingray Wing Planform

4.2.2 WING PLANFORM

The aerodynamics of a supersonic transport poses some unique

problems not typically found in conventional commercial transports, among

them being aerodynamic center shift, wave drag, and supersonic handling
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qualities. Since the stingray spends most of its time in supersonic flight, a wing

with an outboard supersonic section and inboard subsonic section was used.

This will solve one of the primary aerodynamic problems since the inboard

section will be subsonic during supersonic flight, leading to lower induced drag

while the outboard section will be supersonic in order to provide supersonic roll

control.

Table 4.1 lists the general wing planform characteristics of the Stingray.

Aspect ratio 2.87

t/c (root) 0.035
t/c (tip) 0.025

Taper ratio 0.106
Root chord 124.2.4 ft

Tip chord 13.3 ft

,,k,delta1 68-°

A, delta2 30°
_, c/4 57°

Wing span 150 ft

Table 4.1 Stingray Wing Planform Characteristics

Delta wings are typically used to reduce the movement of the

aerodynamic center during transonic flight. The aerodynamic center of the

Stingray shifts 4.4% of mean aerodynamic chord between subsonic and

supersonic flight. A fuel management system will be implemented to control"

center of gravity travel. Since fuel will be stored in the wing, .the fuel

management system will be greatly simplified, minimizing the center of gravity

travel.
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The first sweep angle of 68g allows a subsonic leading edge during

supersonic flight, producing less induced drag. The 30°- outboard delta will

remain supersonic during supersonic flight. The 7g forward sweep along the

outboard trailing edge of the wing was required for area control; the wing area

could be changed without significantly changing the aspect ratio. Also, the

decrease in area increased the wing loading without decreasing the aspect

ratio significantly.

The thickness ratios are small for a delta wing configuration due to the

long chord line. The 3.5% thickness ratio at the root will provide more than

adequate fuel volume. The taper down to 2.5% is beneficial in supersonic flight

since it reduces the maximum cross-sectional area of the wing.

The taper ratio for the wing is 10.6%. Short wing tips were chosen for

high speed roll control and, more importantly, for structural considerations:

since more lift is generated at the tip of the wing, a longer tip would mean higher

stresses and bending moments, hence, more structural weight. The .average

dihedral for the wing is zero. The wing twist angle is set at -1 degree for good

roll characteristics at high angle of attack. With this twist angle, the Stingray will

be stable in all axes.

4.2.3 AIRFOIL SELECTION

After comparingseveral NACA wing sections, a thin wing section was

selected. The advantage of a thin wing is that it provides less frontal area.,

hence leading to lower supersonic wave drag. The three disadvantages are

that the fuel volume is reduced (comparedto subsonicwing sections) and the

landing gear must be specially tailored so as to minimize wing landing gear

volume. In addition,the structuralmomentsof inertiawilldecrease. Finally,thin

wing sectionsare structurallyheavier. Since aerodynamic drag was the main
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concern in the supersonic wing design, the one advantage outweighed the

three disadvantages.

The airfoil chosen for the Stingray Was a modified NACA 65-206 (Figure

4.3). This thickness ratio of this airfoil was modified so as to meet the needs of

the Stingray• The data for NACA 65-206 was used and assumed to be valid for

preliminary design. The section was modified to 3.5% at the root chord to

provide adequate fuel volume and to 2•5% at the tip in order to reduce the

maximum cross-sectional area. With the 3•5% t/c, the maximum thickness of the

wing was 4.55 ft.; if the 6% airfoil was used, the maximum thickness would have

increased to 7.8 ft.

The leading edge radius of 0•240% will induce suction on the first crank

delta in supersonic flight. Since this section is behind the Mach cone, the

leading edge will be subsonic during supersonic cruise. The disadvantage of

the sharp leading edge is that it is not efficient under high aerodynamic heating

conditions when compared to a round leading edge.

15.
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Rgure 4.3 Stingray Airfoil Section (Modified NACA 65-206, Ref. 26)
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4.2.4 HIGH LIFT DEVICES

The size, location, and flap type for the wing were estimated using (Ref.

2). A comparison was made between plain flaps, single-slottedand double-

slotted Fowler flaps. It was determined that single slottedFowler flaps located

on the inboard section of the wing would enhance both takeoff and landing lift

coefficients. Placement of these flaps would also leave sufficient space for

placement of high speed ailerons. P.lainflaps require a larger percent of the

wing span to produce the same amountof lift. Double-slottedFowler flaps were

not needed since the single-slotted flaps provided sufficient lift. In addition,

leading edge flaps were placed along the inboard delta wing to aid in low-

speed lift.

Flap deflections of the Fowler flaps at takeoff is 25 degrees. This

ocoincided with an increase in the lift coefficientof 0.43, providinga CL of 0.9. A

45 degree flap deflection at landingprovidesa change in CLof 0.46, witha CLof

0.93

The flap area at takeoffand landingconditionswas calculatedusing (Ref.

6). The critical case is takeoff, where the wing area/flap area (S/Swf) was

0.877. Landing required a flapped area of 0.599. The Stingray was easily able

to make these requirements since Fowler flaps were placed along 53% of the

trailingedge and leading edge flaps were placed along 90% of the wing. A flap

and controlsurface layout is providedin Figure 4.4.
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Item Description Area per Half
1 Fowler Flap 11000
2 Fowler Flap 1400
3 Fowler Flap 7600
4 Aileron 11600
5 Leading Edge Flap 10400
6 Leading Edge Flap 39000
7 Spoiler Panels 11300

Figure 4.4 Stingray Control SurfacePlacement
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4.2.5 FUEL VOLUME

Delta wings generally have a great deal of volume available located in

the wing. With the capability to carry over 96% of the mission fuel in wing tanks,

the Stingray is no exception. When compared to the Concorde, which carries

fuel in the fuselage due to its smaller wing, the Stingray will be able to car'ry

almost 400,000 gallons of fuel in its wings. Figure 4.5 shows the fuel tank

location on the Stingray

The fuel volume calculation was started by laying out the major wing

structure, landing gear volume, control surfaces, and engines. The remaining

volume of the wing was then broken up into 12 prismatic shapes for which

conservative volumes (0.8-0.9 of actual) could be easily calculated . Each

volume was multiplied by 50.4 pounds per cubic foot of volume to obtain the

weight of fuel (JP-5) that that section of the wing can hold. The weight and

volume capabilities of each fuel tank is shown in Table 4.2. The equations for

transport aircraft, straight tapered subsonic wings, and for delta winged military

aircraft, larger structural volume, both greatly underestimated the available fuel

volume. A fuselage tank was added because an additional 5% more fuel was

necessary to complete the mission. The fuel located in the fuselage was initially

located in the tail but was moved into the wing box to keep the center of gravity

forward. The aircraft can carry 8 percent more fuel than it needs for the mission,

including reserves. This additional fuel volume can be used as surge tanks or

to control the center of gravity location.
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Figure4.5 Stingray FuelTank Location

O ' Y'
Tank '/oWeight Volume (ft2) Weight (gal)

1 12.40% 940 48000
2 12.40% 940 48000
3 26.60% 2020 100000
4 26.60% 2020 100000
5 2.80% 210 11000
6 2.80% 210 11000
7 16.20% 1240 63000

Total 100% 7580 381000

Table 4.2 FuelTanks
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4.3 FUSELAGE DESIGN

4.3.1 INTERIOR LAYOUT

The interior arrangement of Stingray provides accommodations for three

classes and 250 passengers. A breakdown of the cabin layout is presented In

Figure 4.7.

The spacious 2-2 seating in first class (Figure 4.6) comprises 10% of the total

seating. The aisle width in this class is typically 28" between arm rests.The first class

seats have a seat pitch of 42" and typical aisle height of 84". Some of the luxuries of

first class seating includes individualpop-up LCD movie monitors and earphones for

musicentertainmentfor the durationof thefour hour flight.

50 i,

Figure 4.6 Stingray First Class Cross-Sectional Layout
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FIRST I BUSINESS ECONOMY

AISLE HEIGHT 86 IN. 84 IN. 80 IN.

AISLE FIIDTH 28 IN, 2.2 IN. 22 IN.

SEAT PITCH d2 IN, 38 IN. 341N.

FIGURE 4.7 STINGRAY CABIN LAYOUT
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The 3-2 seating arrangements in both business and economy were carefully

selected based on passenger comforf, accessibility of emergency egress,

aerodynamic drag penalties, and airport compatibility when compared to a typical 2-

2 seating or 2-1-2 seating. A 2-2 seating would eliminate the "middle man squeeze"

associated with a triple seating, however, this configuration would make the aircraft

nearly 320 feet long, posing airport compatibility problems. The 2-1-2 seating

arrangement would have increased the cross-sectional diameter to a minimum of

184", which is too large for wave drag considerations.

The business seating (Figure 4.8) comprises 55% of the total seating

arrangement. To compensate for the potentia! discomfort of triple seating, 20" wide

seats are incorporated. The spaciousness of the seats and additional arm rests

between the seats would diminish the "middle man squeeze" problem. The typical

aisle width of the business class is 22". The typical aisle height ranges from 86" in

the first class to 80" in economy class. As a compliment to the business class,

telefax and telephone machines will be placed at the center of the business class

section.
¢164.d

Figure 4.8 Stingray BusinessClass Cross-Sectional Layout
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" The economy class (Figure 4.9) is comprised of 35% of the total seating

arrangement. The seating arrangement shifts from a 3-2 seating to a 2-2 seating as

the aircraft tapers down. The seat width of the economy class is i9". Also the aisle

width is 20"-2" more than the minimum FAR requirement of 18". The aisle height is

80".

20.00

Figure 4.9 Economy Class Cross-Sectional Layout

The Stingray was designed to provide maximum interior flexibility. This was

achieved by efficient modification to the interior layout to accommodate seasonal

travelling. This is achieved by changing the seat pitch or adding additional seats in

the tail cone. The primary changes occur in the transition between business and

economy class.

Galleys, lavatories and closets have been placed throughout each class.

Due to the slenderness of the fuselage, the galleys and lavatories incorporated into

the cabin are those standard on the Boeing 737 or McDonnell Douglas DC-10.

While these are standard items, each galley and lavatory service a smaller number
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number of passengers when Compared to the 737 and DC-10, making them

much more comfortable for both passengers and flight attendants. Because of

the additional space, jump seats for the flight attendants can be provided. The

closets provided for all classes on the Stingray are larger than those currently in

conventional aircraft, such as the Boeing 747-400. Standard comfort items on

the Stingray include telephone jacks and power outlets (for laptop computers).

All passengers will board through a main door 72"X42" located in front of

the business class seating on the left hand side of the aircraft. The size of the

boarding door offers generous boarding or exiting with carry-on luggage. Three

service doors are located adjacent to the galleys on the right hand side of the

aircraft. The service doors are Type B, 34"X72" (Ref. 2).

4.3.2 CROSS-SECTIONAL DESIGN

A seat track system provides maximum flexibility for 4 and 5-across

seating. Due to careful placement of the seat track, seasonal changes in

seating arrangement is possible. The utilitysystems, includinglights,audio, and

emergencyoxygen are positionedfor easy accessibilityfrom each seat.

The general illumination is provided through glare free indirect lighting

and is complemented with individual reading lights for each passenger.

Besides underseatstorage, spaciousoverhead sidewall modulesof 1.86 ft3per

passenger providessafe storage for personalbelongings,blankets and pillows.

Windows will be placed at each seat location throughout all three.

classes. The windows will be circular and 8 inches in diameter and will be

made of current standard materials. Circular windows were chosen over

rectangularwindowsto order to minimizestressin the fuselage skin.

The cargo compartment of the Stingray was designed to accommodate

LDW containers currently in use in narrow-bodied jet transports. The use of
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containers will ensure quicker turn around time. A total of eighteen containers

were needed to accommodate for a pre-load baggage volume of 40 lb. per

passenger. Due to structural penalties created by doors, only one loading door

will be incorporated. These containers will be on systematic tracks which

speeds up the loading and unloading of cargo.

•4.3.3 COCKPIT LAYOUT

The flight deck crew consists of a pilot and copilot. The flight engineer

position has been eliminatedthrough the use of advanced avionics and an

integrated flight management system. However, a flight engineer station may

be outfitted if the airline desires more manual control of flight management

systems and less dependence on automated control. In addition to these three

seat positions, a jump seat is incorporated into the flight deck for an observer.

It is worth noting that the inclusion of a copilot is purely for redundant

purposes and, perhaps, to keep the pilot company. It would be completely

within the capacity of the airline to have the Stingray flown with a single pilot.

This would be very attractive from an operating cost standpoint.

Figu}e 4.10 illustrates the layout of the flight deck. Advanced avionics

technology and flat screen displays will minimize the workload on the pilot by

displaying information efficiently and in the form of graphic images where

possible so as to avoid a "numbers overkill", or the display of so many numbers

that the pilot loses track of the function of the numbers.

Flight control surfaces will be actuated through the use of a sidestick

controller, located on the outboard side of each pilot, and conventional rudder

pedals. The rudder pedals will also provide braking to the main gear wheels

while on the ground.
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The engine throttles will be located on the center panel, within reach of

both pilot and copilot. +,1_,n

r - - -_-- ---1 .... i

J

........ " _._

SIDESTiCK CONTROLLER OPTICALLYENHANCEDVISIONWINDOWS

Figure 4.10 Stingray Flight Deck Layout

Due to the shallow Curvature of the aircraft nose, two possibilities were

considered for pilot visibility. The first was a droop nose, the second, an optical

system. The droop nose, which is used in the Concorde, was rejected since it

would add considerable weight and complexity, thus increasing maintenance

and cost. In terms of optical systems, a "see-by-wire" system was studied as

well as a fiber-optic "periscope" system. Neither system would replace the"

windshield, but would provide forward visibility at high angles of attack. The

"see-by-wire" system would involve computer imaging of the runway and terrain

on a video screen. While this system has the ability to provide additional

information to the pilot and will work in all types of weather, pilot acceptance of

this system has not been favorable. :
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Figure 4.11 Stingray Visual System
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Figure 4.12 Pilot's Expanded View Using Stingray Visual System
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4.4 EMPENNAGE DESIGN

4.4.1 HORIZONTAL STABILIZER

The initial sizingof the horizontaltail volume was achieved by lookingat

the values for existingsupersoniccruise aircraft. Balancing horizontalcontrol

power, flight trim conditionsbased on static margin, and parasitic drag on the

horizontal tail, the tail volume was set to 0.065. This is at the low end of the

range but compares favorably with other conventional delta wing supersonic

cruise aircraft.

Horizontal controlpower is providedby two splitsegment elevators, each of

the four segments having its own electrohydrostaticactuator for redundancy.

The tail was designed to provide enough controlvolume to provide adequate

control power in the case of individual surface failure. The layout of the

horizontal empennage is shown in Figure 4.13. The whole horizontalstabilizer

has a trim capability of plus or minus 20 degrees and the elevators have a

capability of plus or minus 15 degrees. The horizontal stabilizer is intended

mainly as a trim surface buthas a small enough inertia and an actuatorsized to

act as a control surface (stabilator)if necessary. As shown in Figure 4.13, the

tail is swept to minimizedrag at cruise Mach numbers, but has a higheraspect

ratiothan the wing to improveits liftcurve slopeduringtakeoff and landing. The

3.5% thick symmetric airfoil provides adequate aerodynamic performance as

well as adequate structurevolume.



34

-- 20.5' = _ 7.6'

31.7'

Figure 4.12 Horizontal empennage

4.4.2 VERTICAL STABILIZER

The preliminary vertical stabilizer volume coefficient was chosen by

looking at existing supersonic cruise aircraft. The initial value chosen was

0.066, comparable to the NASA AST-100, and slightly smaller than the

Concorde or the TU-144. Several of the directional derivatives degenerate at

high Mach numbers but the condition that sized the tail was the single

(outboard) engine out conditionin the landing configuration. Delta wing aircraft

generally require a very large vertical tail for acceptable directional stability at

highangles of attack. The rudderis split intotwo sections,each controlledby a

separate actuator for redundancy. Both sections are deflected during low

speed maneuvering, while the lower section provides all control power at high

Mach numbers to minimize the bending moment on the tail. The rudder

provides 10 degrees of movement in both directions to provide directional

control. The major factors driving the design of the vertical empennage were,

takeoff one engine out FAR requiredcontrolpower, roll to roll performance, and

degraded lateral directional handling qualities at high Mach numbers (dutch
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roll). The basic parameters associated with the vertical empennage are shown

in Figure 4.13.

Figure 4.13 Vertical empennage

The structure and low speed control requirements of the vertical stabilizer

set its 45 degree leading edge and 4 percent thick symmetrical airfoil. The low

speed control requirements outweighed the high speed drag penalty of having

a supersonic leading edge on the vertical stabilizer.
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5.0 PROPULSION SYSTEMS

5.1 ENGINE SELECTION

The engine selected for the Stingraywas a mixed flow, low bypass ratio

turbofan whose data was providedby NASA-Lewis Research Center. Sufficient

data was available to accuratelydeterminewhether or not this engine met the

needs of the Stingray. The thrust-specificfuel consumption(with units of Ibs-

f/Ibs-T/hr) for this engine is 0.78 in takeoff, 0.89 in subsonic cruise, and 1.17 in

supersonic flight at 60,000 ft. at Mach 2.4. A technology improvementof 5%

was taken for all SFC values since this engine will not be certified for another

20 years (Ref. 11). Further improvementsin SFC would reduce aircraftweight

and increase range. Figure 5.1 shows a picture of the NASA-Lewis engine

used in the Stingray and Table 5.1 providesengine parameters at.different flight

conditions.

xed Flow Inlets'- 13.3'
- = = I 1.3'_12.3' =

I\

!

/
TransLating _ 7.25' --_ _ _ _, _"/
Center Body ....

CE/_VASA --"
Clean Combustor

Engine

Figure 5.1 NASA Lewis Engine Cutaway (Ref. 24)
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Available Thrust (in Ibs.) Excess (in Ibs.)
Thrust

Takeoff 242280 Takeoff 120345
Landing 242280 Landing 163035

Subsonic 96896 Subsonic 47929
Supersonic 79607 Supersonic 7821

Required Thrust (in Ibs.) SFC (in Ibs-f/Ibs-T/hr)
Takeoff 121935 Takeoff 0.78

Landing 79245 Landing 0.78
Subsonic 48976 Subsonic 0.89

Supersonic 71786 Supersonic 1.17

Table 5.1 Engine Parameters with All Engines Operational (Ref. 24)

5.2 ENGINE SIZING AND LOCATION

The NASA-Lewis engine was not sufficient by itself to meet the Stingray's

needs. An afterburner was consideredfor the criticalconditionof one engine

out on takeoff, producinga scaling factor of 1.07. This meant that the engine

needed to be sized for supersoniccruise. However, this allowed for no excess

thrust in cruise, decreasing the maneuverability of the Stingray. A scaling

factor of 1.19 was needed in order to meet the FAR 25 one engine out

requirementwith no afterburners. This correlatedto only an 800 Ibs. savings in

engine weight and no decrease in engine length. For this reason, it was

decided to scale the engine by 1.19 and keep the engine dry at all conditions,

allowing sufficientexcess thrust at all flight conditions.

The thrust-to-weightratiofor that conditionwas 0.34, or a takeoff thrust of

242,000 Ibs was required. This scaling factorenabledthe Stingrayto meet the

FAR requirements without adding the .weightof an afterburner. For all other
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flight conditions, the engine was more than capable of meeting required thrust

levels. Table 5.2 shows the critical case which sized the Stingray engine.

TAN 0.34
Thrust 242280

Scaling Factor 1.19

Table 5.2 Stingray Critical Engine Requirements

The four engines were placed under the wing near the trailing edge.

Location was driven by the landing gear placement; engines need to be placed

such that Foreign Object Damage (FOD) was minimal. Advantages in under-

wing mounts is that accessibility of the engines for maintenance will be easier.

Also, the exhaust plume will not interfere with flow over the wing.

The separation of the engine was governed by the one engine out

conditions, catastrophic failure and landing gear placement. Outboard engine

placement was limited by rudder control power necessary to counter the yawing

moment induced by outboard engine failure. Additionally, should a catastrophic

failure in one of the engines occur, the distance between engines will ensure

that the other engine will not be damaged. The inboard engine was set by the

placement of the landing gear. Because the engine inlet extends past the

landing gear, the inboard engine must be outboard of the landing gear.

The final size of the engine, after consideration of placement, scaling

factor for the critical condition, and thrust requirements led to the dimensions"

found in Table 5.3.
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Component Length (ft) Diameter (ft) Weight (Ibs)

Engine 11.35 7.25 8500
Inlet 13.38 6.33 4200

Nozzle 12.31 6.23 4800
Engine 0 0 800

Accessories
Nacelle 27 7.08 1500

Total Pod 37.05 8 19800

Table 5.3 Engine Dimensions

5.3 INLET DESIGN

Since this engine is designed for supersonic flight, a built-in shock

system will be necessary to compress and slow the air flowing into the engine

core. The Stingray engine uses an axisymmetricinternal3-shock system with

a translating center body. The translating "spike" will enhance pressure

recovery in all stages of flight regime. The pressurerecovery with the movable

spike was 96% at takeoffand subsoniccruise,and 93% at supersoniccruise.

The inlet is designedto be 12.84 ft. long. This dimension was provided

by NASA-Lewis (Ref. 27) and is sized by diffusionof the flow necessary before

compression. The airflow into the engine usingthis inletwas slowed from Mach

2.4 down to Mach 0.69, a typical number for supersonic engines. Due to

boundary layer theory, a predicted bounda.ry layer of 6 inches must be

manipulatedsuch that it does not enter the engine. For this reason, an 8 inch,

long pylon was used to place the engines below the boundary layer. A small

drag penalty is paid due to interference between the wing and the engine.
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5.4 ENVIRONMENTAL CONCERNS

There are two main areas under which the Stingray engine must be

environmentallyconscious. First, it must meet at least FAR 36 Stage III noise

requirements and second, the nitrous oxide (NOx) emissions must cause

minimal (if any) damage to the earth's fragile ozone layer.

The Stingray engine willmeet FAR 36 Stage III by using a mixed ejector

system as a noise suppressor. Typically, exit jet velocities above 1400 ft/sec

will require some type of noise suppression(Ref. 17). With the Stingray's exit

velocity of 3200 ft/sec, the ejector will be needed. The ejector will take

bypassed flow as well as outside flow and eject the flow into the nozzle,

enhancing flow mixture. Accordingto NASA-Lewis, the ejector will provide 19

EPNdB of noise Suppression, enough to meet FAR 36 Stage III. The

disadvantage with the ejector is that is causesoalossof 4 to 5% of thrust. This,

however_has been accounted for in the engine scaling. The mixed ejector is

shown in Figure 5.2.

Figure 5.2 Stingray Noise Suppressor-Mixed Flow Ejector
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The'nitrous oxide emissions are not a problem for the Stingray engine.

NASA-Lewis has incorporated the use of the NASA/General Electric clean

combustor which will reduce the NOx to less than 8 grams NOx per 1 kilogram

fuel burn, minimizing ozone damage. This will have no effect on thrust output

on the engine due to the .fact that the data available from NASA-Lewis was

based on the incorporation of the clean combustor.
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6.0 LANDING GEAR.

6.1 LANDING GEAR OVERVIEW

The landing gear for the Stingray was designed with the following

limitations in mind. First, the landing gear needed to absorb all landing and

taxiing shocks, minimizingstresses and vibrationson the airframe. Since the

Stingray is a heavy aircraft, the landinggear must be able to distributethe load

on the runway such as not to damage the pavement. Finally, the landing gear

must optimize the utilizationof existing technology to cut down production and

developmentcosts.

The final configuration of the landing gear system for the Stingray are

presented in Figure 6.1. The nose gear layout resembles the traditional

McDonnell-Douglas nose gear design. The main•gear configurationresembles

the landinggear system for the Boeing747-400.

Both nose and main gear, however, required criticalmodificationsbefore

aircraft integrationdue to the slendernessof the Stingray. This layoutyielded a

load classificationnumber (LCN) of 82, less than that of the Boeing 747-400,

which has a LCN of 92. As seen from Figure 6.1, a tail wheel was incorporated

to prevent the engines from strikingthe ground during rotationfor takeoff. This

wheel will be retracted forward into the fuselage after takeoff. Table 6.1 shows

the load distributionof the landinggear at takeoffand operatingempty weight.

Nose Gear 6.5% 10.0'/o II
Main Gear 94.5% 90.0% II

Table 6.1 Landing Gear Load Distribution
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The landinggeardesigninvolvedan iterativeprocessinsizingthetires,

struts_and shockabsorberstohandletheaircraftweight,imi_actloading,and

c.g.excursions.Italsoinvolveda detailedstudyoftheretractionsystemsbefore

modificationscouldbe made. Upon completionofthesizingand modifications,

the landing gear was integrated into the aircraft for fit & function, tolerance, and

interaction with other systems such as propulsion, structures and fuel tanks. The

final sizing, corresponding sample calculation, and load distribution analysis

are presented in the Ref. 24.

The load distribution and the rotation for takeoff led to the use of Oleo

pneumatic strut on all gears. To prevent the entire load of the aircraft from being

distributed on the back main gear upon takeoff rotation, an Oleo pneumatic strut

system with interconnected cylinders were incorporated onto the main gears.

This technology is currently incorporated into the Boeing 747-400 landing gear

system (Ref. 4). In terms of energy absorption and dissipation, Oleo pneumatic

struts are about 90% efficient.

The tire pressures for both nose gear and main gear are presented in

Table 6.2.

Tire Size Tire
Pressure

Nose 48 X 18 175 psi
Main 50 X 20 175 psi

Table 6.2 Tire Parameters

6.2 NOSE GEAR

The dual tire configurationof the retractable nose gear is presented in

Figure 6.2.
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Figure 6.2 Stingray Nose Gear Configuration

The nose gear has freefall capabilities, as specified by the FAR 25. This

nose gear was designed to handle both the static and dynamic impact loading

from the gross takeoff weight upon emergency landing. A load distribution of

6.5% on the nose gear at gross takeoff weight allows for controlled steering

while taxiing and taking off. A load distribution of 6.5% on the nose gear at

Operating Empty Weight ensures taxiing capability under this load condition.

To ensure static stability, a positive rake is incorporated. This feature is

stable because a positive rake tends to lift the aircraft if the nose gear begins to

swivel. To ensure dynamic stability a slight positive trail was incorporated. This

feature allows the runway-to-tire friction to rotate the tire back to its originally

intended position. The positive trail also helps to reduce an oscillatory dynamic

instability called shimmy. Due to gear stiffness, strut size, and load on nose gear

a shimmy damper is not needed. A drag strut is incorporated to prevent
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accidental damageto Oleo pneumatic cylinder caused by the tremendousdrag

force during taxi and landing. Other features of the nose gear system include a

nose gear actuator, steering cylinder, towing link, torsion link and retractable

doors. The nose gear does not have braking capability; the braking of the

aircraft will be adequately handledby the main gears.

6.3 MAIN GEAR

The retractablefront and back main landing gear of this aircraft has a

twin tandemconfigurationas shownon Figure6.3a and 6.3b respectively.The

main gear layout resemblesthat of the 747-400. The utilizationof existing

landinggeartechnologywas intendedto minimizethe research,development

and pre-productioncostof a newdesign.

I75 ps_
FRONT MAIN GEAR

Figure 6.3a Stingray Main Gear Configurations
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Figure 6.3b Stingray Main Gear Configurations

Furthermore, this four truck configuration was one the few design options

that yielded a reasonable LCN, structural loading on the thin wing sections, and

retraction mechanism. In addition to these advantages, this twin tandem

configuration does not have as bad of a scrubbing problem when compared to

conventional six or eight wheel trucks.

Due to the fact that all four struts on the main gear are interconnected

with hydraulic lines, the constant loading on front and back main gears can be

regulated by differentiating the strut extension and compression during rotation"

for takeoff. This feature also improves the lateral stability of the aircraft when

taxiing along the runway as shown on Figure 6.4.

The penalty for this configuration was the additional weight due needed

for the two additional struts when compared to a two strut configuration. The

design results, however, yielded identical strut sizes for the main landing gear
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to make use of compatibility of spare parts. In addition, ihe tradeoff for the ability

to land on any existing international airports in the world without .causing

damage to the runway, lowered concentrated loading on the wing structure, and

performance made this choice reasonable.

Wing gear Body gear Wing gear

J'_ " _1_ _,_n _ C:_ gaa,
Level surface Lateral or longitudinal contour Ground turn on Tail down landing

adverse contour
"--- FWD

(bJ C,car leveling _rJtem

Figure 6.4 Stingray Landing Gear Leveling System (Ref. 18)

Another feature of the main gear is differential braking, which enhances

the steering capability of this aircraft. The four truck configuration resulted in

smaller brakes. This will both increase the brake area and dissipate heat faster

when compared to larger, but fewer brakes.

The brakes on the gears are composed of disc brakes made of anti-skid

carbon. This type of brake is 40% lighter than conventional steel brakes but

costs nearly twice as much. Given time, the cost should come down with

increased utilization of these brakes by other aircraft. This braking system is"

capable of holding-the aircraft while running the engines at full throttle. Heat

sinks are incorporated to prevent over heating from the inside. Carbon brakes

dissipate heat quicker than steel, which is desirable for decreasing turn around

time.
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7.0 STRUCTURES

7.1 MATERIALS

Material selection for the HSCT poses a unique challenge uncommon in

conventionalsubsonicaircraftdesign. Due to thermalheating experiencedas a

consequenceof supersonicflight,the materials utilizedwill have to provide high

strength to weight characteristicsat elevated temperatures. A cruisevelocityof

Mach 2.4 induces unadjusted skin temperatures averaging 340 degrees

Fahrenheit. Since this exceeds the practicaloperatinglimit of aluminum alloys

(Figure 7.1), more exotic materials will have to be used over much of the

airframe.

Four main design criteria determined the final material selection. The

first and most importantwas the materialthermalcharacteristics.The strengthto

weight ratio is also especiallycriticalfor this type of aircraftbecause of the high

weight associated with supersonicflight. The large fuel volume requiredto fulfill

the mission requirements drove the gross take-off weight to a high number

which reinforcedthe necessityfor minimizingthe structuralweight of the aircraft.

Material consistencywas also a majorconcernbecause of thestresses induced

at the interface of dissimilar materials with incompatible thermal expansion

coefficients. Economic factors were also of primary concern in the

determinationof the final material layout illustratedin Figure 7.1. Titaniumwas

selected as the primary structural material contributing to approximately 60,

percent of the airframe. Aluminumalloys are the second largest contributor,

composing 35 percent of the airframe. Special compositeswill be utilizedto a

minordegree on somecontrolsurfacesfor reasonsaddressed later.

Due to material selection,the airframe cost inflates beyond conventional

subsonic aircraft such as the Boeing 747. To offset this initial increased
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investment, the structural design is intended to reduce long term maintenance

costs. This will be achieved through the use of unusually large single forgings

bonded together by adhesives over much of the airframe. Bonding component

interfaces with adhesives and minimizing the number of rivets required will

increase the life expectancy of the airframe and consequently reduce long term

maintenance costs. A reduction in manufacturing cost is also accomplished by

the elimination of thousands of holes that would have to be precisely drilled into

very hard titanium surfaces to accommodate rivets.

Titanium was selected over other potential materials such as advanced

metal matrix composites due to lower investment cost. Composite structures of

this type could not be implemented due to the extreme initial capitol investment.

The lack of empirical knowledge about the performance of load carrying

composite aircraft structures reinforced this decision. FAA certification and

airline acceptance of structural composite materials is not yet widespread

enough to justify their use. Manufacturing costs for the large titanium structural

components would be reasonable because they require conventional methods,

which when optimized, can be adequately efficient. The lack of property

variations at projected operating temperatures made titanium a suitable

material. The strength to weight ratio of titanium remains virtually constant in

the temperature range of concern.

Aluminum, maintaining production costs nearly half that of titanium, is

utilized in areas in which it satisfied operating requirements. This occurs on the-

upper fuselage where relatively low skin temperatures exist.

Composites will be utilized on all control surfaces except the leading

edge flaps. The reason for this is the necessity to use the next generation metal

matrix composite materials in limited simple forms to prepare for a transition of

construction tactics in the future. Control surfaces, being independent
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detachable structures subject to periodic replacement and repair, are simple

enough to justify composite construction costs. A weight savings has also been

confirmed by the use of composite structures in these areas. This provides a test

bed for the development and use of these materials to greater extent by the

airframer in the future. If it is determined that advanced composites are

inappropriate for this type of application, the control surfaces can be easily

replaced with metallic substitutes.
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7.2 V-n DIAGRAM

The V-n diagram in Figure 7.2 was constructed by the method shown in (Ref.

5). The criteria for FAR 25 certified aircraft were followed, includingmaximum

maneuvering load factors of positive2.5 gees and negative 1 gees. A cruise

Mach number of 2.4 at 60,000 feet set the equivalent airspeed (KEAS) to 423

knots. The maneuver point was established by using the maximum cruise

configuration (flaps and gear up) lift coefficient of 0.55. The dive point and

maximum structuralvelocityline was established using the value recommended

in (Ref. 5) of 1.25 times the cruise velocity. This may be slightly higher than

necessary for thisclass of aircraft in supersoniccruise, but at loweraltitudesthis

velocity will be critical. The maximumstructuralvelocity (Vdive)sets a dynamic

pressure limit (Qbar) of 650 psf. The gust load criterion for FAR 25 aircraft

resulted in the sloped dotted lines shown in Figure 7.2. These linesall fall

within the previously defined maneuver envelope indicatingthat gust criterion

have no additional impact on structural design. This makes sense because

gust sensitivityis a functionof the lift curve slope and wing loading. A highly

loaded delta wing is not very sensitiveto gust loading.
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7.3 STRUCTURAL LAYOUT

Conventional methods similar to those used on existing aircraft were

used to determine the structurallayoutof the Stingray(Ref. 3, 18). The wing was

to be the only exceptionas detailed later. Aerodynamicloads were determined

using the critical case of a 2.5 g maneuver as dictated by the V-n diagram

(Figure7.2).

A minimumskin thicknessof 0.07 incheswas requiredon the fuselage to

maintain cabin pressurization in the aluminum section. This thickness was

continued throughout the titanium section of the fuselage to accommodate

rivets. Fuselage frames were spaced at a standarddistance of 18 inches which

allowed plenty of room for the inclusionof windows (Ref. 18). The minimum

frame depth for the aluminum fuselage sectionwas calculated to be 5.5 inches

(Ref. 3). Cabin and fuselage dimensionsallowed a frame depth of 6 inches to

accommodate the extra fuselage torsion due to the unusually long length.

Fuselage Iongeronspacing was maintained at a conventional 10 inches which

also helped to accommodate the selected windowdiameter of eight inches (Ref.

is).

Most ofthenose cone,due toextremetemperatures,iscomposed of

titanium.A smallportionofthetipiscomposed ofkevlartoallowfortheuse of

radarequipment.A hightemperaturesiliconsealantwillbe used atthetitanium/

aluminum interfaceto help absorb the stressesinducedby incompatible

expansionratios.The empennage sectionisconstructedsimilartothe nose

cone withsimilartreatmentof the interfacebetween itand the aluminum

fuselagesection.

The horizontalstabilizerand rudderfollowedconventionaldesign

characteristicsutilizingmain spars,stringers,and ribs.
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The main wing will be constructed of titanium skin and substructurewith

composite rear control surfaces. The unique feature of the wing is the intended

use of adhesives as the primary bonding agent instead of rivets. This should

allow the wing to have more flexibility and a more consistent load distribution,

reducing the number of stress risers. Rivets will be used sparingly as a means

of protection against adhesive failure. The reduction of stress risers will

increase the fatigue life of the wing considerably, which is especially critical in

the type of operating environment expected (Ref. 28). High temperatures will

cause the wing to expand (6 inches in overall length) and flex against the

applied loads. If the design does not in some way compensate for this

expansion, the consequences could be disastrous and costly. It is critical that

the adhesive chosen has favorable strength characteristics at elevated

temperatures. It will alsohave to exhibit limited flexibility characteristics. A

weight savings (maximum 15%) should also coincide with the extended use of

adhesives, but since the extent of the savings is yet undetermined, it has been

omitted from the weight analysis (Ref. 28). Another advantage to the use of

adhesives is the utilization of the large interface between structural components

without drilling holes and destroying the integrity of the structures.

Wing spars were located to pick up component loads, lifting forces, and

to act as fuel tank barriers. A wing carry through box is included at the rear

portion of the wing to help provide a smooth load redistribution into the

reinforced fuselage frames. The number of ribs Will be limited due to the"

utilization of fuel storage bladders in the wing. This results in unusually thick

ribs to compensate for wing twist. The use of internal fuel bladders may prove

critical due to the expansive characteristics of the wing. If the structures acted

as fuel barriers also, leaks would undoubtedly become an issue. The.wing skin

has not been designed to be a load carrying member at this point of the design
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stage. As a consequence, the skin thickness is dictated by the minimum

required for riveting, which is 0.06 inches f6r most structures. A skin thickness

of 0.07 inches is used on the Stingray wing. Stringers have not been

incorporated into the design at this time, but will be utilized and placed once a

more accurate analysis has been completed.

Wing spars are sized to resist bending and shear loads experienced at

the critical design condition of a 2.5 g maneuver as determined by the V-N

diagram. A typical section is composed of two caps, a web, and stiffeners and is

sized to the maximum proportions above. A typical wing spar profile, rib profile

and structural layout are included in Figure 7.3. The shear and moment

diagrams for this particular spar are included in Figure 7.4 and Figure 7.5 on the

following page.
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8.0 AERODYNAMICS

8.1 LIFT PREDICTION

The lift distribution for the Stingray was calculated using the NACA 65-

206 airfoil data. The Stingray Wingis designed to ensure a good aerodynamic

performance for both subsonic and supersonic flights, The lift prediction for

different flight conditionsis shown in Table 8.1.

CL CL= (1/deg)
Subsonic 0.328 0.043

Cruise
Supersonic 0.153 0.035

Cruise
Take-Off 0.90 0.09
Landing 0.93 0.09

Table 8.1 Stingray Lift Prediction for Different Flight Conditions

The maximum clean lift coefficient for the Stingray was calculated to be

0.47 at an angle of attack of 10.0 degrees. With a flap deflection of 25 degrees

at takeoff, CL increased to 0.90 with an angle of attack of 10.0 degrees. The

reason for choosing an airfoil with camber is to provide the aircraft with extra lift.

The result has proved it to be correct. Without the camber, the CL at the same

angle of attack would decreased by approximately 0.11. Although camber

increases induced drag, this penalty is small compared to the lift benefits. The"

use of leading and trailing edge flaps also provides the aircraft with the

necessary lift. Figure 8.1 shows the variation of aircraft CL with flaps up and

flaps down.
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Figure 8.1 Variation of Aircraft Lift Coefficient vs. Angle of Attack
with Flaps Up and Flaps Down

8.2 DRAG PREDICTION

Drag polars were calculated for takeoff, landing, subsonic and

supersoniccruise conditions. Zero lift drag was calculated using skin friction

coefficientson each exposed surface of the aircraft, includingflaps and landing

gear. Because the Stingray spends most of its mission in supersonic flight,

wave drag contributions were calculated using area ruling methods and the

Sears-Haack area rulingdistribution(Ref. 11).

In order to calculate the zero-liftdrag (for all flightconditions),the aircraft

was divided into componentsto be analyzed separately. Interference and form

factorswere calculatedfor each componentas well. Base drag from the engine

was neglected due to the jet exhaust plume. Since the aerodynamics of the

Stingrayare optimized for supersonicflight, a fineness ratioof 21.58 was used,

minimizingthe bluntnessof the body.
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Induced drag (or drag due to lift) was calculated in subsonic flight by

using (Ref. 11). The Oswald span efficiency factor was calculated as a function

of the aspect ratio and the sweep angle. Induced drag for supersonic flight was

calculated by (Ref. 9) assuming a subsonic leading edge. This equation is a
t

function of the inverse of the lift curve slope.

Wave drag in supersonic flight was analyzed by comparing the

Stingray's area distribution to that of the Sears-Haack body. Ref. 11 provided a

method to calculate the wave drag as a function of maximum cross-sectional

area, the length and the Mach number. An area distribution plot was made over

the length of the aircraft and a maximum cross-sectional area of 279 ft2 was

used in the wave drag calculation. The wave drag contribution to total drag in

supersonic flight, therefore, is minimal.

Figure 8.2 shows the drag contributions in both supersonic and subsonic

cruise. Figures 8.3 and 8.4 show the drag polar curves for takeoff, landing,

subsonic cruise and supersonic cruise. The lift-to-drag ratio (L/D) for

supersonic cruise was calculated at an average weight of 582,000 Ibs and was

found to be 9.77. The subsonic cruise L/D was found at an average weight of

700,000 Ibs and was calculated as 15.1. These are average values calculated

at average weights for each flight condition. Although no improvements were

assumed in these calculations, L/D values will improve as wing optimization

factors are accounted for. Since lED values play a crucial role in range, weight,

and fuel consumption, improvement in this area will increase mission range,-

decrease aircraft weight, and lessen the amount of fuel necessary per mission.
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9.0 PERFORMANCE

9.1 TAKEOFF AND LANDING PERFORMANCE

The Stingray is designed to takeoff and land in conventional airports,

allowing considerable compatibility with current international facilities. The

missionspecificationsrequirethat the Stingray be able to takeoff and land on a

12,000 foot runway. The takeoff and landingdistances were calculated using

the methodof (Ref. 11). The total takeoffdistance was calculated to be 9800 ft.

The decision point length was calculated using (Ref. 7), with a distance of 6600

ft. resulting.

The landing distance was calculated using a similar method to takeoff.

The landing distance was calculated component-wise by analyzing the

approach, flare, free roll, braking with thrust reversers and braking with no thrust

reversers. The total landing distance was found to be 7800 ft. on dry asphalt.

9.2 CLIMB PERFORMANCE

Climb performance is specified by the FAR 25 regulations. As dictated by

FAR requirementsfor one engine out, the climbgradient for liftoffmust by 0.005

radiansper secondwith a second segmentclimb gradientof 0.03. The Stingray

meets these requirements easily. The height achieved by the Stingray at the

end of the runway is 184 ft, easily clearing the 35 ft obstacle. The takeoff and

second segment climb gradients are 0.16, a full 13% above the FAR"

requirements. The rate of climb with one engine out is 2900 feet per minute,

more than adequate performance in an emergency.

The flight ceiling was specified by the FAR 25 requirements. For

subsonicflight, the rate of climb mustbe 300 fpm. This correspondsto a flight

serviceceiling of 45,000 ft. The rate of climb at 30,000 ft., where the Stingray
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will climb to, is 1154 fpm, well within the FAR requirements. The supersonic

flight ceiling corresponds to a rate of climb of 1000 fpm. Since the Stingray is

accelerating at constant Mach number (not velocity), the Stingray's rate of climb

will be well within FAR requirements for any potential climb condition. Figure

9.2 plots the subsonic rate of climb and flight ceiling (supersonic rate of climb is

not displayed since it is of no concern).

60000 .... ii

!

I Ceiling= 45,000 ft

40000 Ii

o I , ,
0 1000 2000 3000

Rate of Climb (fpm)

Figure 9.2 Stingray Flight Ceiling

9.3 RANGE-PAYLOAD

The range for the Stingray was set by the mission specifications to be"

5200 nauticalmiles. By using the Breguet range equation found in (Ref. 7), the

range of the Stingray was found to be 5400 nauticalmiles. Figure 9.3 presents

the range payload diagram.
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Figure g.3 Stingray Range-Payload Diagram

The harmonic range (or maximumpayload) of the Stingray was found to

be a maximumof 5404 nauticalmiles(pointB). This is the range computedwith

no tradeoff between fuel and payload. The range using the maximum fuel

capacity (point C) was 5511 nmi. This requires a loss of 48 passengers; a

tradeoff not economically feasible. The ferry range (point D), with no

passengers and maximum fuel, was 6078 nmi. Therefore, the Stingray will

easily make its required range withoutsacrificingany passenger payload,



10 STABILITY AND CONTROL

10.1 WEIGHT AND BALANCE

The weight and balance was accomplished by methods described in Ref. 5

and Ref. 9. The aircraft was divided into several groups, each shown in Figure

10•1, containing specific components of the aircraft.

Z"

Fuel 48.8%

Structures 17.9%

'_ Propulsions 11.,?'_

o'_ Payload 8.9%

Total Weight = 720,000 Ib

Figure 10.1 Weight Breakdown

Each component was placed on the aircraft and assigned a weight and a set of

coordinates relative to an absolute zero• The weights assigned to each

component were either calculated using the equations in (Ref. 7, 9) or assigned

based on empirical data. The weight of each component and the moments

created by it were then summed to give the weight and balance characteristics

of the aircraft. The final aircraft configuration weights are given in Table 10.1.
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U'Em'pt_/Wei_]ht(EW)' ' 310,000 _bf 43o/oil
_Operating Empty Weight (OEW) 320,000 Ibf 44%11

Zero Fuel Weight 370,000 Ibf 51%II
IIGrcss Takeoff Weight (GWT0) 720,000 _b!  oo%11

Table 10.1 Aircraft Weights

10.2 CG EXCURSION

The center of gravity (CG) for the aircraft were calculated by taking the sum

of the moments created by each aircraft component about a reference point.

These total momentwere then divided by the aircraft gross takeoff weight to

yield the aircraft center of gravity. The center of gravity for each axis was

calculated. Becausethe aircraft is symmetricand has a conventionallayout the

center of gravity of the Y axis (roll) is right down the centerline of the aircraft.

The center of gravityof the Z axis (yaw) fell very close to the wingcenter in that

axis. The most importantcenter of gravity is that of the longitudinalaxis. Some

of the constraintsthat restrictthe center of gravityare stabilityand control,and

landing gear position. FAR 25 longitudinaltipover criterion restricted the aft

most positionof the center of gravity to a 40 degree angle relative to the main

landing gear. The four truck longitudinallyspread landing gear helps to relax

that requirement by movingthe critical point aft. The nose gear location also

limits the CG envelopeof the aircrafton the ground. The CG cannot be too far

forward or the static and dynamic loads on the nose wheel require a heavier

gear and additionalweight in the structureof the fuselage. The CG cannot be

shifted back too far or the nose wheel may lose steering authority during taxi,

takeoff, or landing. Care must be taken to ensurethat the aircraft can be moved

around while it is emptyand that the aircraftcan be loaded in the proper order

withouttippingover or overloadingany of the struts.
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This aircraft, with its long slender fuselage and highly swept delta wing

provided a great deal of flexibility in loading to provide an optimum CG

envelope. Because there are several wing fuel tanks located in various areas

of the wing, fuel can be pumped from one tank to the others to control the center

of gravity.

The CG excursion diagram, Figure 10.2, shows the center of gravity

envelope for the Stingray. The outer solid lines show the maximum CG shifts

for the aircraft full of passengers. The forward CG path, shown in figure 10.3,

was calculated by subtracting fuel from tank 1 and 2 first, while the aft CG path

was calculated by subtracting the fuel from tank 7 first. The vertical dotted lines

represent the subsonic neutral point (35%) and the supersonic neutral point

(39%). The CG envelope brackets these points nicely, indicating that the fuel

management systems can control the C.G. such that the trim drag can be

minimized during cruise flight.

The best CG travel history during flight falls inside the envelope defined in

figure 10.3. The aircraft begins at the OEW and travels along the straight line to

the OEW+Fuel point as the aircraft is fueled. The addition of passengers

moves the CG forward to GWTO. During the ground handling the aircraft CG is

close to the front main gear but doesn't get close to the rotation point halfway

between the main gear locations. If the fuel management system should fail

while the aircraft is being fueled the aircraft may get very close to the aft tipover

point. The aircraft takes off with the CG at point (3) and the neutral point at the

35% line. The fuel is initially burned from tanks 1 and 2 during the climb,

moving the CG forward. At point (5) the aircraft begins to accelerate from Mach

.8 to Mach 2.4, causing a aft shift of the neutral point and requiring a aft

movement of fuel to move the CG close to the 39% line. As the aircraft passes
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point (7) the CG moves forward as it iollows the aft CG path, burning fuel from

tank 7. If no loiter or divert is required the aircraft lands at point (9).
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10.3 MASS MOMENTS OF INERTIA

The moments of inertia of the aircraft were calculated using the mass

propertiesof the components. These mass momentsof inertia were calculated

using formulas given in (Ref. 19). The componentsof the aircraft contributeda

local moment of inertia due to their mass distributionand a moment of inertia

due to their distancefrom the center of gravityof the aircraft. The contributionof

each portion of the aircraft was calculated using equations from (Ref. 5) and

summed to give the moments of inertia of the whole aircraft for several

conditions. Because this is an extremely large aircraft, especially in the

longitudinalaxis, the moments of inertia are very large. The resultingnumbers

were slightly low when compared to the inertia's of existing aircraft. This

deviationwas most likelythe resultof the method of computation. The inclusion

of additional local moments of inertia and more detailed weight analysis will

improve the accuracy of the moments of inertia. The large magnitudes of the

momentsof inertiaof thisclass of aircraft indicatea very low sensitivityto gusts,

and slow response (frequency) to control inputs. This is typical of large

transportaircraft.
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10.4 LONGITUDINAL STABILITY AND CONTROL

The longitudinal center of gravity plays a major roll in the longitudinal

stability and controlof the aircraft, great positive benefits in stability, control,

and performance can be achieved with proper controlof the CG. The aircraft

begins its flight with a static margin of -3.5%. The horizontal tail is sized to

provide adequate control power for takeoff rotation, and to provide positive lift

and control during the subsonic climb portionof the flight. The negative static

margin requires the liftingtail, which helps the climbperformance of the aircraft.

The aircraft will be restrictedto taking off with the CG forward of the 39% line.

The aircraft will be controllable at a static margin behind the 39% line but

depending on the conditions the tail might become saturated with its lifting

requirementand lose its abilityto provide longitudinalcontrol.

The aircraft will be placarded to restrict flight with the C.G. in the aft-most

configurations. When the aircraft is supersonic the horizontal tail provides

adequate controlpower for any possibleCG position. The best CG positionfor

supersonic cruise would be somewhere very close to the supersonic neutral

point. This would result in neutral stabilityand allow the tail to be unloaded,

improvingcruise L/D. Studieshave shownthat commercial transports can gain

a 3-4 percent fuel savings(Ref. 20) by using a relaxed stabilityairframe with a

stabilityaugmentationsystem. As the aircraft finishes its flight it becomes more

positivelystable.

10.4.1 LATERAL STABILITY AND CONTROL

Lateral stabilityand control derivatives (Table 10.2) were calculated using

Ref. 7. The numbersfor the stabilityderivativesfallswithinreasonable rangefor

those of comparableaircraft.
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M=0.3 M=0.8 M=2.4
Altitude 0 35000 60000
Lateral

CLav 1,473 1.48 1.425

Cy_ -0.216 -0.216 -0.212
Ct.w 0.55 0.307 0.1356

Cnl3 " 0.103 0.097 N/A

CII_ N/A N/A N/A
CnT_ N/A N/A N/A
Cy_ 0.0113 0.0113 N/A
CII3 2.29 2.29 N/A

Cnp 0.007 0.007 N/A

C,yp -0.0167 -0.0167 N/A
Cnp O. 155 0.0328 N/A
Cnq 0 0 N/A
Cyr 0.251 0.251 0.247

Control
i

cob o o o
CL_ 0.115 0.115 0.115
Crrih -0.149 -0.155 -0.149

-0.16

CD8t 0 0 0

CLSt 0.057 0.057 0.057
Crr_ -0.074 -0.08 -0.074

-0.08=
o o o

CISa 0.078 0.078 0.078
CnSa -0.0013 -0.0013 °0.007

CySs 0 0 0
ICl&_ 0.0029 0.0029 0.0029
[CnSs 0.0286 0.0286 0.0286

Cy&. O. 106 O. 106 O. 107
CI&, -0.0053 -0.0053 0.0036
Cn_. 0.0726 0.0726 0.0734 "

i . ' ! i ,' ' Ii |'" ' ' i |,

Table 10.2 Stingray LateralStability and Control Derivatives
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10.4.2 HANDLING QUALITIES AND AUGMENTATION

The negative static margin during the early portions of the flight and the

degradation of the lateral directionalhandling qualities at high Mach numbers

require stability augmentation system. Initial handling quality parameters

(frequency, and damping ratios) showed that an unaugmented aircraft is

controllablebut requiresexcessivepilotworkload (Class 3). The aircraftcontrol

surfaces along with the flight controlsystem provideenough redundancyeven

with multiple actuator/surface failure.

The aircraft will takeoff with unstable, burn fuel in the climb, then cruise with

the Center of Gravity as close to the aerodynamic center. Cruising with a static

margin of zero causes Cmo_ to approach zero, decreasing the longitudinal short

period, decreasing the handling qualities. The horizontal surface is sized to

provide adequate control authority to handle the instability and the neutrality

during the supersonic cruise. A rough gain calculation taking into account the

maximum negative static margin and the horizontal control power showed

longitudinal stability augmentation to be possible (Ka=1.8 < 5 deg/deg).
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• 11.0 SYSTEMS LAYOUT

11.1 AVIONICS

All conduit running through the fuselage will utilize a "4-point"

distribution,as illustratedin Figure 11.1. The purposebehind this is to avoid a

complete catastrophic failure in the event a portion of the aircraft becomes

inoperable.

A set of two independent, identical, advanced avionics computers,

capable of being powered by any of the electrical power sources for maximum

redundancy,will automaticallycontrolfuel management,stabilityaugmentation,

and pre-programmed flight path management (navigation). Each will utilize

Integrated Flightand PropulsionControl (IFPC) for maximumfuel efficiency and

be capable of Category IV, all weather landing. Each computerwill be capable

of handlingall functionsshouldthe other fail.

t CONDIIT ROUTES

Figure 11.1 Stingray Conduit Layout through a Fuselage Cross Section.
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11.2 ELECTRICAL SYSTEM

A schematicof the electricalsystemis shownin Figure 11.2. The primary

power generating systemwill be an AC generatorat each engine. Secondary

power from the auxiliary power unit (APU) and stored battery unit will act as

standby power. Each engine source will power a separate electrical generator

bus, allowingfor four independentelectricalsub-systems. The APU and battery

unit will connect to each of the buses for maximum redundancyand the battery

unit will be used to supplypower to the APU starter. The generator buses will

provide power for heavy loads. Branching from each generator bus is an AC

bus, for lightAC loads,and a DC bus, fed througha transformer/rectifierunit,for

DC loads. Electricalpower willbe used to power exterior and interior lighting,

flight control actuators, fuel pumps, avionics racks and heating elements for

water and galleys.

I GFN BItS 1 t J 1 GEN _$ 3 J GEN BUS 4 I'

%

GEN- GENERATOR /
APU - AUXIUARY POWERUNIT ..-L_.
BAT - BATTERY . To_=u
CHGR- CHARGER s'r_T_A
T/R - TRANSFORMER/RECTIFIER

Figure 11.2 Stingray Electrical Schematic
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11.3 PNEUMATIC SYSTEMS

11.3.1 HIGH PRESSURE SYSTEM

Figure 11.3 shows the layout of the high pressure air system. There is

one independentair source from the APU in additionto an independentsource

from each engine, which allows for sufficient redundancy. These sources of

high pressureair provide for the following:

• Ice protection- An anti-ice systemis locatedon each engine cowl inlet,

horizontalstabilizer leading edge, and wing leading edge slats. These

systems would only be activated under subsonic icing conditions.

Skin temperatureswill prevent ice formationduring supersonicflight.

• Airconditioning.

• Cabin pressurization- The cabin willbe controlledautomaticallyfor an

internalpressure equal to that at 7,500 ft. MSL, as required by FAR

regulations. This systemwill containsufficientfail-safe mechanismsto

preventadverse pressure conditions.

• Cargo heating.

• Fuel tank pressurization - Bleed air will provide pressurization to fuel

tanksduringflight at highaltitudes.

• Potablewater system pressurization.

• Crossengine starting- The enginesare started usinghighpressure air.

This gives the aircraft the capability to start any engine with another

running engine and provides redundancy to the normal APU

pneumaticsource.
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11.3.2 AIR CONDITIONING SYSTEM

Figure 11.4 shows the layout of the major components of the air

conditioningsystem. The general flow of air starts in the passenger cabin,

moving laterallyand into the lower fuselage, movingto the rear of the fuselage

and exiting. Figure 11.5 illustratesa typical flow pattern in the fuselage cross-

section. If there is a significantvariance in temperature along the length of the

passenger cabin due to aerodynamic heating, the cabin may be broken into

separate temperature control zones. This ensures an even temperature

distribution for passenger comfort. The lateral-flow nature of the cabin air

circulation may localize the temperature variations but has the benefit of

minimizingtravel of odorsand other air particulates.

The ratio of recirculatedair to fresh air in the passenger cabin will be

maintained at around 2 to i. This is a reasonable ratio given the absence of

smoking sections,whichreduces the necessityfor fresh air. A comfortable level

of 20 cu. ft. per minuteper crew member willbe suppliedto the flightdeck, while

the rest of the passenger cabin will be at a level of 15 cu. ft. per minute per

passenger. Though passengers could be comfortable with as low as about 8

cu. ft. per minute, it is believed the former value is necessary to provide

adequate coolingof the air due to the supersonicfuselage skintemperatures.

In additionto being fed cabin air from above, the cargo compartment will

receive its own cool-air supply due to excessive aircraft skin temperatures in

supersonicflight.

Separate, redundant cooling is supplied to the electrical/electronic

ecluipment racks and avionics due to the criticality of keeping them at

reasonable temperatures.
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The galleys and lavatories will each be ventilated and the air

immediately exhausted from the aircraft along with the cargo compartment,

electrical equipment, and avionics air.
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Because of the use of the wing box in the fuselage as a center fuel tank, it

is necessary by FAR Requirements to maintaina fume-proof enclosure around

this tank at all times. Due to the natural pressure gradient between the

passenger cabinand the lower half of the fuselage, and the fuselage's rearward

airflow duringpressurization,this requirementwill be satisfied, if there is a loss

of cabin pressure or when the aircraft is loading' or unloading passengers

and/or cargo at a terminal, the necessary rearward airflow will be provided by

suction fans at the air system exhaust port.

Due to the amount of cooling expected to be needed from the air.

conditioning packs, this exhaust air will be utilized by the heat exchangers to

carry the heat generated from cooling the air out of the aircraft.

WINDO W

[ l/ _ AIR PATH /

 o,.o ,JH/I -

Figure 11.5 Stingray Cabin Air Circulation
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11.4 FUEL SYSTEM

The fuel system layout is shown in Figure 11.6. Using the smallest

number of fuel tanks minimized weightand cost, yet redundancyand safety are

stillmaintained for an effective fuel managementsystem. Forexample, dry bays

are located near any criticalareas suchas landinggear wellsand engine struts.

• FUELPUMPS

0 UNDER-WINGFUEUNGPORTS ,FUELDISTRIBUTIONLINES
d,.

• === FUELJEI"rlSONLINES ]

I

Figure 11.6 Stingray Fuel System Layout

The Stingray will use conventional Jet-A fuel. The supersonic cruise

flight temperatures encountered are well below those that might pose a hazard
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to this type of fuel. Thus, the use of exotic fuels is avoided, increasing the

. Stingray's compatibility into today's market.

A sumping system will provide drainage and automatically remove

condensed water from the tanks.

A venting system will prevent overpressurization in the tanks, utilizing

surge tanks to collect and condense overflow fuel vapor. A source to each tank

from the high pressure air system will provide pressurization during high

altitude flight. For redundancy, there will be two fuel pumps in each tank, with

no two from the same tank being run by the same electrical source.

Distribution lines will be run to each tank to enable fueling/defueling to

be performed from fueling ports on the underside of the wing. It is assumed fuel

will be fed from an underground source, eliminating interference with service

vehicles. However, access to the ports by fuel vehicles is still possible. The

fueling system will be pressurized, increasing fueling efficiency.

A fuel jettison system is integrated into the fuel management system if the

need to land arises when the aircraft weighs more than the allowable landing or

ramp weight.

11.5 ESCAPE SYSTEM

In addition to the boarding and service exits, emergency doors will be

located as indicated in Figure 11.7 to provide passenger egress in emergency

situations.

Raft slides will be incorporatedinto the exits not over the wing. Figure

11.8 illustratesa similartype of raft slide used on the Boeing 767. Additional

auxiliary life rafts willbe stored in the cabin. For overwingexits, a slide will be

stored on each side of the fuselage near the trailing edge of the wing. It will
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automatically deploy if any emergency exit on the same side of the fuselage is

opened.

A life jacket will be located under each passenger and attendant seat, as

well as with each flight deck seat.

Figure 11.7 Stingray Emergency Escape System

• RAFTEXTENSIONS

FUSELAGE j :iv ,., u.. _, _J/(=-_ u ._' SLIDE

/
_ .'. , ,, _,,, ,,,

Figure 11.8 Raft/Slide System (Ref. 4)
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. 11.6 OPTICAL SIGNALING •SYSTEM

Signallingbetween the flight controlsand the flight control actuators will

be enacted usinga "fly-by-light"system, or fiber-opticcables. Using an optical

"fly-by-light"systemover an electrical"fly-by-wire"systemhas several benefits.

Glass fiber-opticcable providesa weight savingsover metallicelectrical wiring.

Optical cable is also not susceptibleto the electromagneticeffects of lightning

strike or other electricalwiring. This is a very significantcontributionby the "fly-

by-light" system due to the sensitive tolerance of a flight control signalling

system.

11.7 OXYGEN SYSTEM

In the event of failure of the cabin pressurizationsystem, emergency

oxygen is available (Ffgure 11.9), either activated automaticallyby the sudden

pressure loss or manually by a crew member in the flight deck. Gaseous

oxygen is suppliedvia oronasal masks to each crew member in the flight•deck.

Each passenger and ilight attendant seat is supplied with oxygen, via an

oronasal mask from the overhead passenger service unit (PSU), from a

chemical oxygen generator (Figure 11.10). An additionalmask is available at

each row in case of another mask's (or even a generator's) failure. This is

standard on presentcommercial transportssuch as the Boeing 737 and 767.

Two oxygen masks are also provided in each lavatory. Portable oxygen

cylinders willbe available at various locationsfor purposesrequiringfirst aid or

oxygen mobility.

Although a chemical oxygen generator system weighs more than a

gaseous oxygen system, the generator system provides a larger number of

benefits. Only those generators whose masks are needed are used, the

servicing of high pressure passenger oxygen bottles is eliminated, and
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maintenance of the passengersystem is reduced because of easy access, no

bottle regulators or valves to leak, and the generators' 12-year shelf life.

Therefore,this system should requirelesscost overall.

FLIGHT DECK

Oxygen Cylinder Assembly

[] Crew Mask Coupling I
(_- --i

(_) DiluterDemand Regulator (_) I
(_ Manual Shutoff Valve ' I

' I
I

(_ PressureReducingRegulator ¢ ; I

PressureTransducer - - "_ a ,
I

(_ pressure.Indicator j
I

,,l' Overboard Discharge i
PASSENGER CABIN i

(_) ElectricSwitch ='
• I--._

I

(_ Automatic,Barometrically [ _"'_ } ,
Operated Swtch. _ - -I

"(_ IndicatorLight LAVATORIES I

Z_PassengerMask I _-_] I'_'_"01 '

O Chemical Oxygen Generator _. ..__ ..I
I

--- High-PressureTubing 2 X 3 CONFIGURATION t
I

-'ow-Pre=uro,u_,n, IA'__O} !'_ "Oi,
__jElectrical

Wiring 3 X 3 CONFIGURATION I
I ,.

Electrically-ActivatedDoorLatch J _ I 1
___J

ATTENDANT SEATS

Figure 11.9 Schematicof StingrayOxygenSystem
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Figure 11.10 Stingray Passenger Cabin Oxygen System

11.8 POTABLE WATER SYSTEM

The pressurized water system is powered by bleed air from the high

pressureair system. Water willbe providedto each galley and lavatory. Warm

water will be available by using electricallyheated heat exchangers near each

warm water faucet. Drain water from faucets will exit the aircraft throughdrain

masts:

11.9 WASTE SYSTEM

The self-contained waste system will be powered by vacuum flushing,

using the in-flight pressure differential. This eliminates the need for gravity

plumbingand assists in ventilationand odor control in the lavatories. Vacuum

waste is stored in waste tanks located in the lower fuselage, outside of the

passenger cabin, to prevent odorproblems. Ventilationis providedto the waste

tanks using the same pressure differential. Solid waste is prevented from

entering the vent tubes by a water separator. When no significant pressure

differentialexists,blowerswillbe activatedto preventany "backdrafts'.
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12.0 AIRPORT OPERATION AND MAINTENANCE

The Stingray is designed to be compatible with existing ground handling

equipment with minimum modification. Figure 12.1 shows how airport vehicles

can service the aircraft concurrently. This will provide a one-hour turnaround

time.

Galley access doors are located such that the wing will not interfere with

servicing. Two galley trucks will service the first class and business class

galleys. Another service truck will load the rear galley (in economy class) using

a rear galley servicing door. Current galley trucks will be compatible with the

Stingray.

A secondary boarding door at the rear of the aircraft will also double as a

cleaning service door. This door will be used as a boarding door in airports

were terminals are not available and passengers will board from the tarmac. In

airports with terminals, this door will serve as an access door for cleaning

services.

The main boarding door is located forward of the wing and is less than

17.6 feet above the tarmac. This will enable the Stingray to be compatible will

all current terminals serving the Boeing 747-400. First class will board the

airplane first, followed by business and economy classes.

Cargo trucks and conveyer belt will be used for loading the cargo bay.

The cargo bay will handle 18 LDW containers, with 9 containers being loaded

forward and 9 containers loaded aft of the loading door. There is only one

cargo loading door since additional ones would cause structural problems due

to the "breaks" in the fuselage.
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Lavatory service will .be performed by one truck located under the

fuselage. Since the fuselage belly is 14 feet off the ground, a service truck will

be able to fit under the fuselage without interfering with other service trucks.

Fuel loading receptacles are located on the underside of the wing. Due

to the high fuel volume of the Stingray, two fuel trucks will load fuel into the

aircraft simultaneously. This will cut turnaround time in half.

Potable water tank location under the wing will not interfere with other

vehicles.

/

Figure 12.1 Airport Ground Handling
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13. MANUFACTURING

The final assembly will occur as outlined in Figure (13.1). The wing will

be an independent structure and include a carry through wing box at the rear.

Internal fuel bladders will be installed into the wing during the wing construction

process. Since wing ribs will continue through the fuel cells, the fuel bladders

will have to be composed of a material that can be applied in a liquid or gel form

that will cure to the desired properties (similar to silicon gasket sealant or

generic roofing tar). It will have to be applied near the end of the wing

construction process. Since the wing is the largest independent component,

the rest of the assembly process will have to be conducted around the wing.

The fuselage center sections will be mated to the wing structure. Fairing

will then be added to provide a smooth aerodynami c interface. The fuselage

fore and aft of the wing will be composed of two smaller sections each.

Systems will be added during the construction process. The forward portion of

the nose assembly will include the cockpit and certain avionics systems. The

rudder and horizontal stabilizer will be mounted onto the most aft section after it

has been attached to the rest of the fuselage assembly. Control surfaces,

engines, and landing gear will then be attached to the wing body to complete

the aircraft assembly. The interface between aluminum and titanium sections

will have to be specially treated to reduce heat transfer and excessive stress

buildup. Once again, silicon sealant is a potential candidate material to satisfy.

these needs.

Components will be designed to allow for construction in different areas

or factories and final assembly to be completedwherever economic concerns

dictate.
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14.0 COST ANALYSIS

The estimated cost of the Stingray was calculated using the method from

Ref. 8. The projected life cycle cost (LCC) was estimated in U.S. dollars

projected into the year 2005. The LCC includes the following:

• Research, Development, Test, and Evaluation Cost (CRDTE)

• Manufacturing and Acquisition cost (CAcQ)

• Operating Cost (CoPs)

• Disposal Cost (CDisP)

The breakdown of the above costs is shownin Figure 14.1.

LIFE CYCLE COST PER AIRPLANE

2.10%

14. R&D

Figure 14.1 Stingray LCC breakdown

The costs were based using the following assumptions:

• The material will be mostly titanium and aluminum alloys.

• Advanced technologies will be used in production.
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• Advanced avionics systems will be included.

• Extra facilities and equipment will not be needed for production and

maintenance.

• 500 airplanes will be built to production standards.

• The return on investment will be 10%.

• The aircraft has a depreciation period of 10 years.

The total LCC for the Stingray is calculated to be $1.13 billion, and the

estimated purchase price is $202 million. For an airliner, the operating cost is

very important in terms of obtaining the revenue per passenger mile. The DOC

breakdown is shown in Figure 14.2.

DIRECT OPERATING COST

31.70%_ _26.30%

38.40°/°

Figure 14.2 Stingray Direct Operating Cost Breakdown

With a 10% return on investment and a direct operating cost (DOC) of

$0.07 per seat mile, the minimum ticket price is $0.11 per Passenger mile. This

will represent a 21% increase over the current subsonic fleet ticket price.
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However, the feasibility study (Ref. 16) shows that an increase of 20% in fare

compared to conventional air carriers will be attractive in terms of time savings.

Table 14.1 shows the comparison of revenue per passenger miles between the

Stingray, the Concorde, and the Boeing 747-400.

Concorde Boeing 747-400 Stingray
Year 1971 1989 2005

Market N. Atlantic Atlantic & Atlantic & Pacific
Pacific

Range (nm) 3500 7300 5200

Pax 100 1400 250
ii

TOGW (Ibs) 400000 870000 729000
Rev/pax mi require $0.87 $0.10 $0.11

Table 14.1 Comparison of Revenue for Selected Existing Aircraft

By comparing these four planes in terms of market and revenue, it is very

obvious that the Stingray is competitive with both existing subsonic and

supersonic planes. The results from the cost analysis has proved that the

Stingray will be an economically feasible aircraft by the year 2005.
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CONCLUSION AND RECOMMENDATIONS

The Stingray has been designed to be a realistic aircraft that can be built

by the year 2005. There have been no major technological assumptions, with

the exception of the 5% improvement in specific fuel consumption. The

materials used in the design are all in existence and are currently being used

on transports and military jets alike. This aircraft would represent only a 21%

increase in ticket prices, which allows the Stingray to be economically feasible.

The noise suppression and nitrous oxide modifications designed into the

Stingray engine will make this aircraft environmentally sound. With technology

improvements, the Stingray would be a lighter, more efficient aircraft, in terms of

propulsion, structure, and aerodynamics.

Distinguishing features of the Stingray include an advanced cockpit

visualization system, eliminating the requirement for a mechanically translating

nosecone. Electrohydrostatic actuators are utilized In lieu of conventional bulky

and heavy hydraulic systems throughout most of the aircraft. W_despread use of

adhesives for bonding instead of rivets will be incorporated to help minimize

weight, fatigue, and manufacturing costs.

Further detailed analysis includes a structural analysis using finite

element methods, actual material performance data, and the development of a

control system to enhance the handling qualities of ti_e aircraft. These analyses

will be required to complete the design of this supersonic transport. ,.
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